fuzzy groupoid - определение. Что такое fuzzy groupoid
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое fuzzy groupoid - определение

CATEGORY WHERE EVERY MORPHISM IS INVERTIBLE; GENERALIZATION OF A GROUP
Groupoids; Brandt groupoid; Transformation groupoid; Groupoid (category theory)

Groupoid         
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a:
fuzzy subset         
  • Some Key Developments in the Introduction of Fuzzy Set Concepts.<ref name="CADsurvey"/>
SETS WHOSE ELEMENTS HAVE DEGREES OF MEMBERSHIP
Fuzzy sets; Fuzzy set theory; Fuzzification; Fuzzy subset; Credibility(fuzzy); Fuzzy category; Goguen category; Fuzzy Sets; Fuzzy relation equation; Pythagorean fuzzy set; Degree of membership; Uncertain set
In fuzzy logic, a fuzzy subset F of a set S is defined by a "membership function" which gives the degree of membership of each element of S belonging to F.
∞-groupoid         
ABSTRACT HOMOTOPICAL MODEL FOR TOPOLOGICAL SPACES
Fundamental infinity groupoid; ∞-groupoids; Infinity groupoid; Weak ∞-groupoid; Simplicial groupoid; Infinity-groupoid
In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets (with the standard model structure).

Википедия

Groupoid

In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

  • Group with a partial function replacing the binary operation;
  • Category in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called inverse by analogy with group theory. A groupoid where there is only one object is a usual group.

In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed g : A B {\displaystyle g:A\rightarrow B} , h : B C {\displaystyle h:B\rightarrow C} , say. Composition is then a total function: : ( B C ) ( A B ) A C {\displaystyle \circ :(B\rightarrow C)\rightarrow (A\rightarrow B)\rightarrow A\rightarrow C} , so that h g : A C {\displaystyle h\circ g:A\rightarrow C} .

Special cases include:

  • Setoids: sets that come with an equivalence relation,
  • G-sets: sets equipped with an action of a group G {\displaystyle G} .

Groupoids are often used to reason about geometrical objects such as manifolds. Heinrich Brandt (1927) introduced groupoids implicitly via Brandt semigroups.